English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41999890      線上人數 : 1006
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95914


    題名: 以微電鍍法製備鎳-鋅合金與鎳-鋅/1T相二硫化鉬複合微電極並比較它們在1.0 M KOH之電解產氫性能;Fabrication of Ni-Zn alloys and 1T-MoS2/Ni-Zn composite Microelectrodes by MAGE and comparison their hydrogen evolution performance in 1.0 M KOH
    作者: 林暐翔;Lin, Wei-Hsiang
    貢獻者: 機械工程學系
    關鍵詞: 微陽極導引電鍍法;複合電鍍;鎳鋅合金;二硫化鉬;水熱合成法;析氫反應;MAGE;Composite electroplating;Nickel-Zinc alloys;Hydrothermal synthesis;Hydrogen evolution reaction(HER);Molybdenum disulfide;Microcolumns array
    日期: 2024-07-30
    上傳時間: 2024-10-09 17:23:46 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究以微陽極導引電鍍法製備三維鎳鋅微柱電極,並藉由鋅在鹼性環境下之溶蝕效果藉此增加電極的電化學催化表面積;並利用複合電鍍製備1T相二硫化鉬鑲嵌於鎳鋅合金之中,利用二硫化鉬增加電催化邊緣活性位點以及優化能帶結構等優點,產製1T相二硫化鉬鎳鋅鍍浴之中進行複合電鍍,進而提高電極之產氫活性。
    微陽極導引電鍍法中探討不同濃度氯化鎳所析鍍出之鎳鋅合金微柱其成分比例以及電化學產氫效率,並使用水熱合成法製備出金屬相的二硫化鉬,配製成0.16 g/L ~ 0.64 g/L添加至鎳鋅合金鍍液中,在鍍液中固定施加偏壓3.6 V 與間距60 µm進行複合電鍍以獲得最佳產氫效能之二硫化鉬@鎳鋅複合電極。
    所製得之微柱由電子顯微鏡觀察表面形貌,以能量散射光譜分析化學組成及以X-ray 結晶繞射測定晶體結構。最終將不同濃度之1T相二硫化鉬鑲嵌於鎳鋅微柱浸泡在1.0 M KOH 溶液中,進行線性掃描伏安法、循環伏安法、有效電化學表面積、計時電位法、交流阻抗頻譜法等電化學測試,探討其產氫性能。上述結果顯示合金複合微柱在二硫化鉬20 at.%、鎳45 at.%、鋅35at.%的情況下其擁有最佳的產氫效率,具有最低之塔弗斜率(Tafel slope = 66 mV/dec)、過電位(η10 = -81 mV)和起始電位(Eonset = -0.66 V vs RHE),其電荷轉移阻抗為3.28 Ω·cm2,其結果顯示析氫反應時所需能量。綜上結果顯示可證實二硫化鉬與鎳鋅合金共鍍可增加活性位點以及加速電荷轉移,使電催化電極具備更佳產氫效能。
    ;This study employs microanode guided electroplating to fabricate three-dimensional nickel-zinc microcolumn electrodes. The electrochemical catalytic surface area of the electrodes is increased through the dissolution effect of zinc in an alkaline environment. Additionally, composite electroplating is used to embed 1T phase molybdenum disulfide (MoS₂) into the nickel-zinc alloy. The MoS₂ enhances the electrocatalytic edge active sites and optimizes the energy band structure, thereby improving the hydrogen evolution activity of the electrode.

    The study investigates the composition ratio and electrochemical hydrogen evolution efficiency of nickel-zinc alloy microcolumns deposited with different concentrations of nickel chloride. Metal-phase MoS₂ is synthesized using the hydrothermal method, and a specific concentration is added to the nickel-zinc alloy plating solution. Composite electroplating is performed under a fixed bias of 3.6 V and a spacing of 60 µm to achieve the optimal hydrogen evolution performance of the nickel-zinc/MoS₂ composite electrode.

    The microcolumns′ surface morphology is observed using electron microscopy, the chemical composition is analyzed by energy-dispersive spectroscopy, and the crystal structure is determined by X-ray diffraction. Finally, microcolumns embedded with different concentrations of 1T phase MoS₂ are immersed in a 1.0 M KOH solution, and electrochemical tests, including linear sweep voltammetry, cyclic voltammetry, electrochemical surface area measurement, chronopotentiometry, and electrochemical impedance spectroscopy, are conducted to evaluate their hydrogen evolution performance. The results indicate that the alloy composite microcolumns with 20 at.% MoS₂, 45 at.% nickel, and 35 at.% zinc exhibit the best hydrogen evolution efficiency, with the lowest Tafel slope (66 mV/dec), overpotential (η10 = -81 mV), and onset potential (Eonset = -0.66 V vs RHE), and a charge transfer resistance of 3.28 Ω·cm². Overall, the findings confirm that co-depositing MoS₂ with nickel-zinc alloy increases active sites and accelerates charge transfer, enhancing the electrocatalytic electrode′s hydrogen evolution performance.
    顯示於類別:[機械工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML27檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明