摘要: | 隨著半導體技術的不斷進步,碳化矽(SiC)憑藉其卓越的物理性質,成為高性能電子元件的關鍵材料之一。在此背景下,本研究旨在探索碳化矽材料。雷射改質技術被應用於碳化矽的切片,通過雷射能量改變碳化矽內部結構,從而形成改質層。改質層的厚度反映了雷射切片時雷射的功率與作用深度,進而影響晶圓的品質。因此,我們採用聚焦成形技術來量測碳化矽內部改質層的厚度,提高晶圓品質與改質過程的穩定性。透過系統性地探討與實驗,我們創新性的嘗試與優化了聚焦成形技術在碳化矽材料上的應用,特別是在改質層厚度的量測方面取得了顯著的進展。 研究首先整理了碳化矽材料的基本性質、高科技領域中的應用現狀,以及改質層厚度之重要性。接著,我們分析了聚焦成形技術的原理與應用前景。通過實驗探索,本研究成功開發出一套量測碳化矽內部改質結構的聚焦成形系統,並比較與評估不同聚焦度值演算法在碳化矽改質層厚度量測中的應用效果。結果顯示,在縱向量測時,本系統的縱向解析度為0.8 µm。使用Scharr演算法並搭配常態分佈過濾閥值,量測到的改質層厚度,與白光干涉儀顯微鏡功能量測出來的結果誤差僅小至5 %。此外,本研究進一步驗證了聚焦成形系統的性能,利用THORLABS光學解析度測試片作為標準,我們在橫向量測中比較了其標準長度與聚焦成形系統捕捉影像所計算出的長度,結果顯示兩者之間的誤差低於1 %。本系統的橫向解析度為3.45 µm,繞射極限為1.8 µm,符合繞射極限的理論。這一結果證明了聚焦成形系統在縱向與橫向量測方面的準確性。最後,本研究也分析了聚焦成形系統在量測過程中可能出現的誤差源,探討了各種潛在的影響因素,並提出了相對應的優化,以提升系統性能。 ;With the continuous advancement of semiconductor technology, Silicon Carbide (SiC) has become a key material for high-performance electronic components due to its excellent physical properties. Against this background, this research aims to explore SiC materials. Laser modification technology is applied to SiC slicing, altering the internal structure of SiC through laser energy to form a modified layer. The thickness of the modified layer reflects the power and depth of laser action during laser slicing, thereby affecting wafer quality. Therefore, we employ Shape From Focus (SFF) technology to measure the thickness of the modified layer inside SiC, improving wafer quality and the stability of the modification process. Through systematic investigation and experimentation, we innovatively attempted and optimized the application of SFF technology on SiC materials, achieving significant progress, especially in measuring the thickness of the modified layer. The research first summarizes the basic properties of SiC materials, their current applications in high-tech fields, and the importance of modified layer thickness. Next, we analyze the principles and application prospects of SFF technology. Through experimental exploration, this study successfully developed a SFF system for measuring the internal modified structure of SiC and compared and evaluated the effectiveness of different focus value algorithms in measuring the thickness of the SiC modified layer. The results show that in longitudinal measurements, the system′s longitudinal resolution is 0.8 µm. Using the Scharr algorithm combined with a normal distribution filter threshold, the measured thickness of the modified layer has an error of only 5 % compared to the results measured by a white light interferometer microscope. Furthermore, this study further verified the performance of the SFF system using a THORLABS optical resolution test target as a standard. In lateral measurements, we compared its standard length with the length calculated from images captured by the SFF system, showing an error of less than 1 % between the two. The lateral resolution of this system is 3.45 µm, with a diffraction limit of 1.8 µm, conforming to the theoretical diffraction limit. This result demonstrates the accuracy of the SFF system in both longitudinal and lateral measurements. Finally, this research also analyzes potential sources of error in the measurement process using the SFF system, explores various potential influencing factors, and proposes corresponding optimizations to enhance system performance. |