English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41990848      線上人數 : 1775
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95801


    題名: 奈秒脈衝雷射穿透式焊接玻璃/銅焊合焊合之特性與性能評估;Characterization and Performance Evaluation of Glass/Copper Weld through Pulsed Nano-second Laser Transmission Welding
    作者: 阮懷;Hoai, Nguyen
    貢獻者: 機械工程學系
    關鍵詞: 雷射透射焊接;玻璃/銅黏合;微觀結構;Cu-O-Si共晶化合物;黏接強度;附著力促進層;Laser transmission welding;Glass/copper bonding;Microstructure;Cu-O-Si eutectic compound;Bonding strength;Adhesion promotion layer
    日期: 2024-06-05
    上傳時間: 2024-10-09 17:17:31 (UTC+8)
    出版者: 國立中央大學
    摘要: 在這項研究中,我們透過奈秒脈衝雷射傳輸焊接探索了銅和玻璃之間的異質鍵合過程。 研究了各種加工參數,包括雷射能量、焦平面位置、雷射線能量強度、掃描總數以及塗有玻璃的薄鈦黏合促進層對黏合品質的影響。
    研究了雷射鍵合能量和焦平面位置對焊接品質的影響,利用拉拉分離力 (PTSF) 和剪切拉伸分離力 (STSF) 測量來評估焊接強度。 雷射焊接能量的增加將焊接強度提高到一定閾值,超過該閾值,不規則的熱點會導致空隙或裂紋,從而導致焊接區域內產生殘餘應力。 玻璃/銅界面下方的焦平面位置表現出最高的焊接強度。 此外,使用 PTSF 測量的焊接強度超過了 STSF,這歸因於 PTSF 中焊縫-玻璃邊界處和 STSF 中沿著焊縫-銅界面的分離。脈衝雷射焊接展示了銅與玻璃應用的經濟可行性,實現了超過 10 MPa 的最大黏合強度。 SEM 和 EDS 分析揭示了熔池中 Cu 和 SiO2 的內部混合和顆粒間擴散,而焊接界面處的 HR-TEM 和 SAED 觀察結果表明存在多晶銅奈米顆粒、銅氧化物和非晶 Cu-O-Si。
    考慮總掃描次數和雷射線能量強度,探索適合雷射鍵合機制的鍵結參數,揭示了焊接區範圍與掃描次數之間的直接相關性。 透過改變雷射線能量強度來實現對元素成分和微觀結構的控制。 儘管熔化區Cu微粒分佈不同,但焊接的均勻性歸因於內部混合和相互擴散過程。
    添加不同厚度的鈦薄膜進一步提高了焊接性能。 研究了透射雷射焊接和薄鈦黏合促進層對增強黏合強度的影響。 每個製程參數對黏合品質的影響都經過徹底檢查,以簡化複雜性並確定適當的製程視窗。 對於特定厚度,觀察到焊接強度增加和線能量強度增加的一致模式,在 10 nm Titanium 厚度下實現了 40.15 MPa 的最大黏合剪切強度。 SEM 分析揭示了層間厚度對 Cu/SiO2 接頭微觀結構的影響。
    透過 XRD 和 HR-XPS 鑑定了導致 Cu/SiO2 界面附近形成非晶態 Cu-O-Ti 化合物的化學反應。 EDS 圖提供了 Cu、Ti 和 SiO2 的內部混合和相互擴散所發揮的重要作用的證據。 SAED 和 HR-TEM 觀察結果表明,焊接界面處存在多晶 Cu、α-Ti 奈米粒子、CuTi、Cu2O 和非晶 Cu-O-Ti 區域。 這些發現對於提高銅和玻璃之間的焊接品質至關重要,使接頭在各種工業生產應用中更加可靠。
    ;In this study, we explored the process of heterogeneous bonding between copper and glass through nanosecond pulsed laser transmission welding. Various processing parameters, including laser energy, focal plane positions, laser line energy intensity, the total number of scans, and the impact of a thin titanium adhesion promotion layer coated with glass on bonding quality were investigated.
    The effects of laser bonding energy and focal plane positions on welding quality were examined, utilizing pull-tensile separation force (PTSF) and shear-tensile separation force (STSF) measurements to assess weld strength. Increased laser welding energy enhanced weld strength up to a certain threshold, beyond which irregular hot spots led to voids or cracks, resulting in residual stress within the weld zone. The focal plane position below the glass/copper interface exhibited the highest weld strength. Additionally, weld strength measured using PTSF surpassed that of STSF, attributed to separation at the weld seam-glass boundary in PTSF and along the weld-copper interface in STSF. Pulsed laser welding demonstrated economic viability for copper-to-glass applications, achieving a maximum bond strength exceeding 10 MPa. SEM and EDS analysis revealed intra-mixing and inter-particle diffusion of Cu and SiO2 in the molten pool, while HR-TEM and SAED observations at the weld interface showed the presence of polycrystalline copper nanoparticles, copper oxides, and an amorphous Cu–O–Si region.
    Exploring suitable bonding parameters for the laser bonding mechanism, considering both total scan number and laser line energy intensity, revealed a direct correlation between weld zone extent and scanning number. Control over elemental composition and microstructure was achieved by varying laser line energy intensity. The uniformity of the weld seam was attributed to the intra-mixing and inter-diffusion process, despite the different distribution of Cu micro-particles in the molten zone.
    The addition of titanium thin films of varying thicknesses further improved welding performance. The influence of transmission laser welding and a thin titanium adhesion promotion layer on bonding strength enhancement was investigated. Each processing parameter′s impact on bonding quality was thoroughly examined to simplify complexities and identify an appropriate processing window. A consistent pattern of increased weld strength with higher line energy intensity was observed for a particular thickness, with a maximum bonding shear strength of 40.15 MPa achieved at 10 nm Ti thickness. SEM analysis revealed the impact of interlayer thickness on the Cu/SiO2 joint microstructure.
    Chemical reactions resulting in the formation of an amorphous Cu-O-Ti compound near the Cu/SiO2 interface were identified through XRD and HR-XPS. EDS mappings provided evidence of the significant roles played by intra-mixing and inter-diffusion of Cu, Ti, and SiO2. SAED and HR-TEM observations elucidated the presence of polycrystalline Cu, α-Ti nanoparticles, CuTi, Cu2O, and an amorphous Cu-O-Ti region at the weld interface. These findings hold critical importance in enhancing the welding quality between copper and glass, rendering the joint more reliable for diverse industrial production applications.
    顯示於類別:[機械工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML52檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明