中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95750
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41992903      在线人数 : 1553
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95750


    题名: 分散共識支持向量機之研究;A Study on Distributed Consensus Support Vector Machine
    作者: 蕭子胤;Shiau, Tz-Yin
    贡献者: 數學系
    关键词: 支持向量機;核方法;分散共識問題;交錯方向乘子法;隱私保護;support vector machine;kernel method;distributed consensus problem;alternating direction method of multipliers;privacy preserving
    日期: 2024-07-23
    上传时间: 2024-10-09 17:14:42 (UTC+8)
    出版者: 國立中央大學
    摘要: 支持向量機是一種有效的二元分類器,在各種應用中具有出色的性能。然而,在
    處理大型資料集或來自分散來源的資料時,計算資源的限制和資料隱私問題可能
    會阻礙支持向量機的效能。在本文中,我們研究分散共識支持向量機,它具有兩
    個主要優點:它允許每位工作者在不共享資料的情況下推導出更通用的超平面,
    從而保持資料的隱私;它能夠將大型問題分解為可處理的子問題,透過分散式計
    算提高處理速度。儘管如此,由於分散共識支持向量機的目標函數的不可微性而
    面臨挑戰,我們採用了平滑支持向量機的處理方法來解決這個問題,結合平滑函
    數來增強目標函數的可微性,從而產生了所謂的分散共識平滑支持向量機,它利
    用1-範數進行懲罰計算,優化效率和準確性。最後,我們透過多次數值實驗驗證
    該演算法的效能。;The support vector machine (SVM) is an effective binary classifier with excellent
    performance across various applications. However, computing limitations and data
    privacy concerns can hinder SVM’s performance when handling large datasets or
    data from distributed sources. In this thesis, we study the distributed consensus
    SVM, which offers two primary advantages: it maintains data privacy by allowing
    each worker to derive a more generalized hyperplane without data sharing, and it
    enables the decomposition of large-scale problems into manageable sub-problems
    for enhanced processing speed through distributed computing. Nonetheless, the
    distributed consensus SVM faces challenges due to the non-differentiability of its
    objective function. We adopt the smoothing SVM approach to address this issue,
    incorporating a smoothing function to enhance function differentiability. It leads
    to the so-called distributed consensus smoothing SVM, which utilizes the 1-norm
    for penalty calculation, optimizing efficiency and accuracy. Finally, we validate the
    performance of this algorithm through several numerical experiments.
    显示于类别:[數學研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML34检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明