中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95551
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42001597      Online Users : 535
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/95551


    Title: Enhanced Item Representation for Attribute and Context-aware Recommendations
    Authors: 何若婷;Ho, Jo-Ting
    Contributors: 資訊工程學系
    Keywords: 推薦系統;Recommendation System
    Date: 2024-07-23
    Issue Date: 2024-10-09 17:00:30 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 推薦系統在深度學習領域取得了顯著的成功,特別是對於具有大量互動記 錄的項目。然而,這些系統常常面臨由於項目屬性(如價格、品牌、評分 等)稀疏而導致的挑戰,這會 影響它們在預測較少互動項目時的表現。 為了提升整體效能,我們的研究專注於改進 CARCA 模型的項目嵌入層。 這項改進旨在更好地處理那些訓練不足的項目。我們使用了四個真實世界 的推薦系統數據集來評估我們的方法。研究結果顯示,我們的方法在預 測用戶可能感興趣的項目方面,比現有的先進模型更為優越。;Recommendation systems have achieved significant success in the field of deep learning, particularly for items with abundant interaction records. However, these systems often face challenges due to the sparsity of item attributes (such as price, brand, ratings, etc.), which hinders their performance when predicting interactions for less frequently engaged items. To address improve overall perforrmance, our research focuses on improving the item embedding layer of the CARCA model. This enhancement aims to better handle items that have not been adequately trained. We evaluated our approach using four real-world recommendation system datasets. The findings suggest that our method provides superior predictions of items that users may find interesting compared to the current state-of-the-art models.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML24View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明