中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95458
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41993079      Online Users : 1600
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/95458


    Title: 自建風控模型在降低成本和提高收益方面的應用研究;Application Study of Self-built Risk Control Models in Cost Reduction and Revenue Enhancement
    Authors: 蕭琮寶;Hsiao, Chung-Pao
    Contributors: 資訊工程學系在職專班
    Keywords: 風控評分卡;機器學習;模型解釋性;成本控制;收益率;Risk Scoring System;Machine Learning;Model Interpretability;Cost Control;Profitability
    Date: 2024-07-30
    Issue Date: 2024-10-09 16:52:15 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本研究旨在探討自建風控模型在降低成本和提高收益方面的應用。當前許多
    公司依賴外部風控商進行風險評估,這導致了高成本和模型不透明等問題。本研究
    提出了一種基於堆疊技術的自建風控模型,旨在利用內部數據建立準確且高效的
    風控評分卡模型,以取代外部供應商並提高整體收益。
    本論文的目標是提出一個風險控制模型,使用 Stacking 技術結合多種基底模
    型(如邏輯迴歸、決策樹、XGBoost、LightGBM)達成目標並引入 LIME(Local
    Interpretable Model-agnostic Explanations)方法來提高模型解釋性。首先,收集公司
    內部的貸款資料,並從中提取出用戶提交的相關信息,再利用模型輸出用戶違約機
    率映射評分卡分數來調整貸款額度。
    實驗結果顯示,自建風控模型在降低違約率和提升收益率方面表現優異,並且
    相比外部風控模型有效降低了風控成本,提升了模型透明度和評估結果的精確性。
    基於內部數據進行的風控模型在應對多變的市場需求和保障數據安全方面具有顯
    著優勢。;This study aims to explore the application of self-built risk control models to reduce costs
    and increase revenue. Currently, many companies rely on external providers for risk
    assessment, leading to high costs and opaque models. This study proposes a self-built risk
    control model based on stacking technology, aiming to use internal data to establish an
    accurate and efficient risk scoring model to replace external providers and improve
    overall revenue.
    The goal of this thesis is to propose a risk control model that uses stacking technology
    combined with multiple base models (such as logistic regression, decision trees, XGBoost,
    and LightGBM) to achieve this goal. First, the company′s internal loan data is collected,
    and user-submitted loan information is extracted. Then, the model output probability is
    mapped to a scoring card, and the method is gradually adjusted and optimized.
    Experimental results show that the self-built risk control model performs excellently in
    reducing default rates and improving return rates. Compared to external risk control
    models, it effectively reduces risk control costs, improves model transparency, and
    enhances the accuracy of evaluation results. Risk control models based on internal data
    have significant advantages in responding to changing market demands and ensuring data
    security.
    Appears in Collections:[Executive Master of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML38View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明