English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41997952      線上人數 : 1089
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95245


    題名: γ-SUP 演算法在 NBA 資料分析上的應用;γ-SUP algorithm for NBA data analysis
    作者: 郭修維;Kuo, Shiu-Wei
    貢獻者: 統計研究所
    關鍵詞: γ-SUP 演算法;分群;信賴區間;NBA 資料;不確定性
    日期: 2024-07-09
    上傳時間: 2024-10-09 16:35:22 (UTC+8)
    出版者: 國立中央大學
    摘要: 在眾多分群方法中,γ-SUP 演算法具有一些好的性質,使得它成為分群方法
    當中很好的一項工具,然而此方法的初衷只是為了將相似度高的影像作分群,
    並無法為每一群的中心估計作信賴區間的推論。這意味著 γ-SUP 演算法缺少了
    樣本帶來的不確定性。在本文中,我們提出信賴區間的估計,並且希望能將這
    套方法運用在 NBA 的資料上。過程中,我們以 γ-SUP 演算法為基礎,並且針對
    NBA 的球員分群結果,建立每個群集的信賴區間,藉此了解每個群集的特色,
    換句話說,我們想知道每群球員具有那些突出的能力,或是需要改善的缺點,
    能夠提供教練在球員使用上的參考。另外根據我們的方法我們也發現了一些有
    潛力成為明星球員的人,這項發現能夠實際的運用在球員自由市場上,提供球
    隊管理層做為與球員簽定合約的依據。;For clustering methods, the γ-SUP algorithm possesses several favorable proper-
    ties, making it a valuable tool in clustering. However, its original intention was merely
    to cluster images with high similarity, without providing a confidence interval for each
    cluster. It implies that the γ-SUP algorithm lacks evaluation for uncertainty from a sample. In this article, we provide a confidence interval and apply this method to NBA data.
    Based on the γ-SUP algorithm, confidence intervals for clusters of NBA players are established to understand distinctive features between groups. In other words, we want to identify standout abilities or the needs of each player, which can provide managementdecisions in a free agent market.
    顯示於類別:[統計研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML28檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明