|
English
|
正體中文
|
简体中文
|
全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41989586
線上人數 : 978
|
|
|
資料載入中.....
|
請使用永久網址來引用或連結此文件:
http://ir.lib.ncu.edu.tw/handle/987654321/93636
|
題名: | 以微铣削進行高分子微流體裝置之製程整合;Polymer microfluidic device fabrication |
作者: | 張祖榮;CHANG-TSU-JUNG |
貢獻者: | 機械工程學系 |
關鍵詞: | 微流道晶片/裝置;微铣削製程;熱塑性接合;Microfluidic device;Micro-milling process;Thermoplastic bonding |
日期: | 2023-02-01 |
上傳時間: | 2024-09-19 17:23:10 (UTC+8) |
出版者: | 國立中央大學 |
摘要: | 本論文以高分子聚合物聚甲基丙烯酸甲酯(Poly Methyl Methacrylate , PMMA)作為微流體裝置的基材,以高精密五軸數控加工機(Computer Numerical Control , CNC)進行微流體裝置的微铣削製程。工件在經過微铣削 加工後加工表面會有刀紋路及毛邊的產生,這對微流體裝置來說有一定的 影響,刀紋路會使表面粗糙度變差、毛邊在微流道內會造成改變液體流向 或氣泡的產生,故本文將會先針對微铣削高分子聚合物進行參數的調查, 了解加工參數對表面粗糙度及毛邊的影響,並將其進行優化以製造低表面 粗糙度及小毛邊大小的高品質之晶片。並且透過了解微铣削加工的加工極 限(加工機所能加工最小的間隔牆厚度與最深的加工深度、具有高長寬比的 微柱…等等方式),並利用五軸切削工具去創造與其他機台無法製作出的更 加微小尺度與複雜的圖形特徵。在 CNC 直接铣削製造微流道凹模最小的特 徵尺寸會受限於現有的刀具尺寸(刀直徑:寬度與刀長:深度),因此可以製造 出塑膠及金屬凸模用於 PDMS(Polydimethylsiloxane)的翻模或使用熱壓印法 去製造出直接铣削所無法加工的微流道圖形(流道尺寸小於刀徑、流道深度 高於刀長等…等),便能進行多樣化的晶片製作。 在後端的是封裝製程,因為目前尚無完美的熱塑性材料接合製程,每 種接合方法都各有其優缺,故依據每個微流道晶片的需求選擇其所適合的 接合方法,逐一呈現目前始能完成的不同裝置。因此在本論文中,除了探 討铣削參數對於毛刺及表面粗糙度的影響之外,再以製造凸模的方式對微 铣削的能力進行探討。最後再以依各流道設計及需求選用其適合的接合方 法。希望能提供一種以精密五軸 CNC 微铣削為前段製程的關鍵進行高精度 且微小複雜的特徵結構的加工並達到製造少量且多樣的微流體裝置。 ;In this study, Poly Methyl Methacrylate (PMMA) was used as the substrate for microfluidic devices. and the micro-milling process of the microfluidic device is carried out by a high-precision five-axis Computer Numerical Control (CNC) machine. After the micro-milling , the surface will have milling traces and burrs. which has a certain impact on microfluidic devices. The milling traces can deteriorate the surface roughness, and the burrs in the microfluidic channel can cause changes in the flow direction of the liquid or the formation of air bubbles. Therefore, I investigate the parameters of micro-milled polymers first, and understand the influence of processing parameters on surface roughness and burrs. We try to optimized to produce high-quality chips with low surface roughness and small burr size. By understanding the machining limits of micro milling processing,( The processing machine can process the smallest partition wall thickness and the deepest processing depth、micropillar features with high aspect ratios…) Use five-axis CNC to create smaller scales and complex graphic features that cannot be produced with other equipment. In CNC direct milling to manufacture microfluidic dies, the smallest feature size is limited by the existing tool size .( milling cutter’s diameter :width、milling cutter’s length :depth) Plastic and metal can be manufactured for inverted feature as micro-mold turning PDMS or hot pressing to create microfluidic patterns that cannot be machined by direct milling. Then can enables a variety of chip production. At the back end is the bonding process, as there is no perfect thermoplastic bonding process currently. Each bonding method has its own advantages and disadvantages. According to the needs of each microfluidic chip, select its suitable bonding method, and present the different devices that can be completed iii one by one. in this study, in addition to discussing the influence of milling parameters on burrs and surface roughness, the ability of micro-milling is discussed by manufacturing inverted feature as micro-mold. Finally, the suitable bonding method is selected according to the design and needs of each micro channel. We hope to provide a precision five-axis CNC micro-milling as the key to the front-end process, perform high-precision and micro-complex feature structure processing, and achieve the manufacture of a small number and variety of microfluidic devices. |
顯示於類別: | [機械工程研究所] 博碩士論文
|
文件中的檔案:
檔案 |
描述 |
大小 | 格式 | 瀏覽次數 |
index.html | | 0Kb | HTML | 11 | 檢視/開啟 |
|
在NCUIR中所有的資料項目都受到原著作權保護.
|
::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::