English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41986140      線上人數 : 1058
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/93603


    題名: 應用ABAQUS顯性求解器於機械元件之強度及破壞分析:以筆電樞紐為例;Application of ABAQUS explicit solver for strength and fracture analysis of mechanical components: A case study on laptop hinges
    作者: 黃文彥;Huang, Wen-Yen
    貢獻者: 機械工程學系在職專班
    關鍵詞: 顯性積分法;擬靜態模擬;延性破壞;破壞應變能;Explicit method;Quasic-static;Ductile damage;Fracture energy
    日期: 2023-07-20
    上傳時間: 2024-09-19 17:21:06 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究使用有限元素軟體的顯性積分法(Explicit)進行擬靜態模擬(Quasi-static Simulation),評估材料的延性破壞及樞紐組件的最大扭矩以便減少樞紐組件的設計時間及模具試模成本。模擬內的材料延性破壞設定以17-4PH金屬粉末射出成型試棒進行單軸拉伸實驗獲取材料資訊,並以有限元素軟體ABAQUS作材料轉換及拉伸模擬,實驗與模擬結果顯示應力應變曲線相符,其最大應力誤差率介於0.01%至0.13%,塑性斷裂應變誤差率介於0.05%至1.56%,證明材料延性破壞設定的準確性。樞紐扭矩實驗中的心軸使用10B21材料,承架使用SK7T1,兩支材料分別進行單軸拉伸試驗並於軟體內作材料轉換及延性破壞設定,並設定扭矩破壞模擬。從兩者的模擬與實驗結果得知,心軸實驗與模擬結果最大扭矩值誤差率為10%,模擬斷裂位置與實驗相符;承架實驗與模擬結果最大扭矩值誤差率2.5%,並由軟體內觀察到實驗斷裂位置有明顯拉伸應力集中與實際斷裂位置相符。由實驗與模擬結果的相互印證可說明使用顯性積分法進行擬靜態破壞模擬可以幫助預測樞紐的受力行為及最大扭矩值以便縮短樞紐組件設計時間,並避免隱式求解器因高度非線性而迭代不收斂之問題。;This study applies explicit method in finite element software for quasi-static simulations to assess the ductile fracture of materials and the maximum torque of hinge components, aiming to reduce the design time and mold trial costs of hinge components. The ductile fracture settings for materials in the simulation are based on uniaxial tensile experiments conducted on 17-4PH metal powder injection molded specimens to obtain material information. Transformation of material stress strain curve from engineering to true one and tensile simulations are performed using the ABAQUS finite element software. The simulation result of stress-strain curves are highly consistent to experimental ones with a maximum stress error rate ranging from 0.01% to 0.13% and a plastic fracture strain error rate ranging from 0.05% to 1.56%, confirming the correctness of the ductile fracture settings for the material.
    In the hinge torque experiments, the core shaft is made of 10B21 material, and the hinge support frame is made of SK7T1 material. Both materials undergo uniaxial tensile tests, and material curve transformation and ductile fracture settings are performed within the software, along with torque simulations. From the comparison of the simulation and experimental results, it is found that the maximum torque values have an error rate of 10% for the core shaft, with the fracture location in simulation matching the experimental results. For the hinge support frame, the maximum torque value has an error rate of 2.5%, and it is observed in the software that there is significant concentration of tensile stress at the actual fracture location.
    The consistency between the experimental and simulation results demonstrates that using the explicit method for quasi-static fracture simulation can help predict the behavior of objects under loading and maximum torque value of hinges. This method can help reduce hinge design time while avoiding convergence issues associated with implicit methods due to high nonlinearity.
    顯示於類別:[機械工程學系碩士在職專班 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML19檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明