Shack-Hartmann Wavefront Sensor(SH-WFS)被廣泛使用於多種領域。其量測原理為透過微透鏡陣列對波前進行採樣,並透過光點的重心位置來獲得部分斜率,以此重建波前。使用重心法計算會以斜率代表整個Hartmann Spot的資訊,而忽略掉高頻波前所造成的Hartmann Spot形變。 本論文以取得Hartmann Spot完整的相位資訊為目的,選擇使用相位回復演算法來達成該目標。分別分析了Gerchberg-Saxton Algorithm 與 Linearized Focal-plane Technique兩種相位回復演算法的優缺點,並將現實量測中所會遇到的狀況進行模擬分析,最後透過簡單的實驗來驗證兩種演算法的準確性,藉此比較出較為適合用來計算Hartmann Spot完整相位資訊的演算法。;Shack-Hartmann Wavefront Sensor(SH-WFS) is widely used in various fields. The measurement principle is to sample the wavefront through a microlens array, and obtain a partial slope through the position of the center of gravity of the spot, so as to reconstruct the wavefront. Using the centroid method will represent the entire Hartmann Spot information as a slope, ignoring the Hartmann Spot deformation caused by the high-frequency wavefront. In order to obtain the complete phase information of Hartmann Spot, This proposes chooses to use the phase retrieval algorithm to achieve this goal. The advantages and disadvantages of the two phase retrieval algorithms, Gerchberg-Saxton Algorithm and Linearized Focal-plane Technique, are analyzed respectively, and the situations encountered in the actual measurement are simulated and analyzed. Finally, the two algorithms are verified through simple experiments. Therefore, a more suitable algorithm for calculating the complete phase information of Hartmann Spot can be compared.