English
| 正體中文 |
简体中文
|
全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 45393682 線上人數 : 4412
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by
NTU Library IR team.
搜尋範圍
全部NCUIR
管理學院
資訊管理學系
--研究計畫
查詢小技巧:
您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
進階搜尋
主頁
‧
登入
‧
上傳
‧
說明
‧
關於NCUIR
‧
管理
NCU Institutional Repository
>
管理學院
>
資訊管理學系
>
研究計畫
>
Item 987654321/88816
資料載入中.....
書目資料匯出
Endnote RIS 格式資料匯出
Bibtex 格式資料匯出
引文資訊
資料載入中.....
資料載入中.....
請使用永久網址來引用或連結此文件:
http://ir.lib.ncu.edu.tw/handle/987654321/88816
題名:
使用多種圖編碼進行鏈結預測
;
Using Multiple Graph Embeddings for Link Prediction
作者:
國立中央大學資訊管理學系
貢獻者:
國立中央大學資訊管理學系
關鍵詞:
鏈結預測
;
網絡嵌入
;
集成學習
;
深度神經網路
;
Link prediction
;
Ensemble learning
;
Graph embedding
;
Deep Neural Network Link prediction
;
Ensemble learning
;
Graph embedding
;
Deep Neural Network
日期:
2022-07-26
上傳時間:
2022-07-27 11:31:57 (UTC+8)
出版者:
科技部
摘要:
目前鏈結預測已被廣泛的應用在社群網絡、電子商務、生物資訊等各個領域,透過鏈結預測,可以幫助研究人員了解網絡的樣貌。在鏈結預測中,透過網絡嵌入的方式,能夠將網絡中的節點訊息投射到低維向量空間中,並有效的保留網絡結構,在本論文中我們提出一個集成學習模型來保留每一網絡嵌入的特性,透過不同的網絡嵌入學習節點表示。我們在五個資料集上進行實驗,預期利用多個網絡嵌入表示法的學習,透過多個不同的分類器進行訓練,最後以深度神經網絡作為最後的結果預測,可以有效提升鏈結預測的準確率。因為鏈結預測在商業上已經大量且廣泛地使用,所以本計劃不但有學術價值外,更能讓鏈結推薦系統的實務應用更精準、更抓住客戶的真實需要。
關聯:
財團法人國家實驗研究院科技政策研究與資訊中心
顯示於類別:
[資訊管理學系] 研究計畫
文件中的檔案:
檔案
描述
大小
格式
瀏覽次數
index.html
0Kb
HTML
96
檢視/開啟
在NCUIR中所有的資料項目都受到原著作權保護.
社群 sharing
::: Copyright National Central University. | 國立中央大學圖書館版權所有 |
收藏本站
|
設為首頁
| 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
DSpace Software
Copyright © 2002-2004
MIT
&
Hewlett-Packard
/
Enhanced by
NTU Library IR team
Copyright ©
-
隱私權政策聲明