本論文分為兩部分,第一部分主要是利用生質碳源以模板法製備多孔洞碳材PCC並應用於電池之負極材料。生質碳源因來自生物質藉由適當的製備方式,可保留其天然之微量元素達到自摻雜的效果,本研究之PCC碳材經一系列材料鑑定發現還具有氮、硫、矽和磷元素,對於材料在電性上的表現有一定程度的幫助,且有著高比表面積和多樣孔洞的特殊結構也使得材料有著更大的電容量。此材料在鋰離子電池系統以電流密度100 mA g-1進行充放電循環測試,經過393圈後能得到699.4 mA h g-1優異的電容量表現,另外在鈉離子系統中以電流密度1000 mA g-1進行充放電循環測試,在493圈後能穩定得到150.9 mA h g-1的電容量顯示此材料具有良好的循環穩定性。 第二部分為複合式有機無機高分子電解質之合成,根據使用需求製備成固態和膠態兩種形式,並應用於鋰離子電池之電解質。本實驗利用兩種不同特性之高分子材料M-2070和ED2003分別與4,4’-Methylene diphenyl diisocyanate(MDI)交聯形成線性前驅物,接著依據不同重量百分比並改變其氧鋰比合成出混摻型有機無機固態高分子電解質其在30℃下離子導電度達到1.19×?10?^(-4) S cm-1,在膠態系統中更是高達2.19×?10?^(-3) S cm-1,且在硬幣型電池的充放電循環測試中經過18圈有著高達154.7 mA h g-1的電容量表現優於市售隔離膜。 ;Recently, biomass derived carbons have gained enormous attention mainly due to their abundance, environmental friendliness and the factors associated with the utilization in energy conversion and storage systems. Heteroatom doping is an effective strategy to optimize the electrochemical performance of biomass-derived carbon electrode materials. Furthermore, fast redox reactions originating from surface functional groups can contribute to extra pseudo-capacitance. Biomass-based carbons with heteroatom doping can be realized by choosing heteroatom-enriched precursors or chemical dopants and processed by appropriate synthesis method. In this study, ordered mesoporous silica (KIT-6) is used as template with pine cone powder to prepare pine cone derived carbon (PCC). The PCC delivers a high reversible capacity of 699.4 mA h g-1 after 393 cycles at a current density of 100 mA g-1 when use as anode for lithium-ion battery. When investigated in sodium-ion battery, the PCC anode has exhibited a high reversible discharge capacity of 151 mA h g-1 after 493 cycles even at current density of 1000 mA g-1. Besides, the mixed storage mechanism is further studied by kinetic calculation. In the second part, the synthesis of a new hybrid organic-inorganic polymer electrolyte based on 4,4’-methylene diphenyl diisocyanate, ED2003, M-2070 and organosilane ICPTES is discussed. The solid polymer electrolyte (SPE) has delivered the maximum ionic conductivity value of 1.19 × 10-4 S cm-1 at 30 ℃. A maximum ionic conductivity value of 2.19 × 10-3 S cm-1 is achieved for the plasticized polymer electrolytes (PPE) immersed in liquid electrolyte. The lithium battery prepared with the plasticized polymer electrolyte and LiFePO4 cathode has exhibited a high reversible discharge capacity of 154.7 mA h g-1 after 18 cycles at a current rate of 0.3 C. The new hybrid polymer electrolyte holds promise for application in next generation lithium-ion batteries.