English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 45442507      線上人數 : 4302
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/84012


    題名: Enhanced Model Agnostic Meta Learning with Meta Gradient Memory
    作者: 劉旻融;Liu, Ming-Rong
    貢獻者: 資訊管理學系
    關鍵詞: 深度學習;機器學習;元學習;連續學習
    日期: 2020-07-16
    上傳時間: 2020-09-02 17:55:01 (UTC+8)
    出版者: 國立中央大學
    摘要: 現今深度學習模型若要提升準確率至相當水準,經常動輒數千、數萬筆訓練資料才可達成,若要模型學習過去未見過之其他類別資料,往往需要將模型重新訓練。這些實務上的需求使得元學習和連續學習等領域逐漸受到重視,但元學習雖以良好的模型學習彈性著稱,但因訓練過程的高不穩定性使得效能並不可靠。另一方面,連續學習的高穩定性,降低其可學習的任務數量。因此本篇論文著重透過結合元學習與連續學習兩種小樣本學習上表現卓越的演算法,透過連續學習提升元學習的穩定性,同時也透過元學習改善連續學習的學習彈性。此外,過去在深度學習領域研究中,發現所謂的穩定性-彈性困境,意指為兩種效能表現經常會有取捨關係,無法兼得,然後在本篇研究的實驗結果中,該篇模型可在現今小樣本學習常見之資料集上,同時提高測試準確率和驗證準確率。;Recently, the importance of few shot learning field has obviously increased, and variety of famous learning methods, like Meta-learning and Continuous learning. These methods proposed to solve few shot learning, which main purpose is both training model with only few amounts of data and maintaining high generalization ability. MAML, which is an elegant and effective Meta-Learning method demonstrates its powerful performance in Omniglot and Mini-Imagenet N-way K-shot classification experiments. However, the recent research points out that the problems of instable performance of MAML and others model′s architecture problems. On the other hand, continuous learning models usually face the issue of catastrophic forgetting when the models not only learn new tasks but keep remembering the knowledge about previous tasks. Therefore, we propose our method, En-MAML, which is based on MAML framework, to combine the flexible adaptation characteristic from meta-learning with the stability performance from continual learning. We evaluate our model on Omniglot and Mini-Imagenet datasets, and follow the N-way K-shot experiment protocol. From our experiment results, our model demonstrates higher accuracy and stability on Omniglot and Mini-Imagenet.
    顯示於類別:[資訊管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML126檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明