使用紅外線熱影像量測太陽能電池已成為太陽能電池研究重點之一,尤其在歐洲已經逐漸成為電站驗收與維運的標準測試項目。本研究目標在製作遠紅外線抗反射光窗輔助熱影像儀檢測太陽能電池。重點在於利用高純度的矽晶圓當作光窗基板,並鍍上高低折射率堆疊的紅外線光學膜;高純度的矽晶圓在紅外線波段的光學穿透率高,且成本較鍺晶圓低,適合當作新一代的紅外線光窗材料。此外,配合高低折射率的抗反射光學膜可增加矽晶圓的紅外線穿透率。傳統使用的遠紅外線光學膜材料大多有毒性或放射性,因此本研究使用非毒性與非放射性氧化鋅搭配純矽當作低與高折射率材料,並使用高能磁控濺鍍系統,將氧化鋅薄膜及矽薄膜維持在固定的折射率,穩定製程。最後透過柯西公式以及多層膜的堆疊設計達到抗反射的效果。抗反射膜的樣品在7-9 um的平均穿透率高達86.83 %,位於7.98 um 波長有最高的穿透率93.10 %。;As demand increases the far-infrared thermal image sensor with the anti-reflection coating is one of the hot topics of the standard testing for solar cells. In this research a high purity silicon wafer was applied to be the substrate of the far-infrared window with an anti-reflective coating. The high purity silicon wafer is a high optical-transmittance material in the infrared range like Germanium but with lower price. Besides, when the far-infrared window was deposited high and low refractive index optical thin films as the anti-reflection coating, the transmittance of infrared range can be improved. Most of the materials used for the far-infrared optical films are toxic or radioactive. In this study, non-toxic and non-radioactive zinc oxide and pure silicon thin films were used as the low and high refractive index materials. The high-power impulse magnetron sputtering system was used to fabricate zinc oxide and silicon thin films with stable refractive indices. Finally, the anti-reflective coating was achieved by applying the Cauchy formula and the multilayer design. The average transmittance of the anti-reflective sample is 86.83 % at wavelength 7-9 um. And the maximum transmittance is 93.10 % at 7.98 um.