摘要: | 本研究目標為建立一套應用於UV-LED系統光源的設計方法,此設計方法主要步驟如下:(1)將單光源之輻射照度光場分布模型化,(2)建立一多光源光分布函數演算法,(3)使用二次微分法對多光源間距進行最佳化,(4)建立一鏡像虛擬光源演算法,(5)將演算法計算結果輸入光學模擬軟體進行優化設計。 本研究首先以最小平方法將單光源的輻射照度光場分布進行模型化,並建立演算程式,接著建立一多光源光分布函數演算法,此演算法能將多個光分布函數模型進行疊加計算,可根據目標將多光源系統光場分布最佳化。然後我們使用此光分布函數演算法對光源以最密堆積排列之UV-LED平行曝光機的光源排列間距進行設計,對光分布函數多點進行二次微分,快速計算出在光場不同位置中,有著較佳輻射照度均勻度的光源排列間距,來達到平行曝光機目標面積內之輻射照度均勻度92%之設計要求。再來為增加平行曝光機之可使用面積,本研究透過改變光源位置以及使用反射元件的方式,利用多光源陣列邊緣的光線提升目標面積邊緣較低之輻射照度值,並以鏡像虛擬光源法撰寫一套演算法,計算較佳的光源以及反射元件相對位置,最後將結果輸入光學模擬軟體進行優化設計。 根據設計結果顯示,本研究成功設計出在DSR = 10下,光源間距d = 31.2mm,目標面積輻射照度均勻度達92%之UV-LED平行曝光機,目標面積 x方向寬度102mm,y方向寬度114 mm,以及一目標面積x方向寬度達117mm之掃描式曝光機,此結果證明了本研究所建立之技術應用於UV-LED系統光源的可行性,提供了一種準確的設計方法,使得設計者可以根據需求快速地計算UV-LED光源排列方式以及反射元件適當的擺放位置。 ;The purpose of this thesis is proposing a design method for a UV-LED light source system. The primary steps of this design method are as follows: (1) modeling the irradiance distribution of a single light source on the optical field, (2) establishing a light spread function(LSF) algorithm of multi-light source system, (3) optimizing the source-to-source spacing by the secondary derivative method, (4) establishing an algorithm by the mirror virtual light source method, (5) inputing the algorithm calculation result to the optical simulation software for optimal design. First, we model the irradiance distribution of a single light source on the optical field by using the nonlinear least squares method and establish a LSF algorithm, which can calculate the irradiance distribution of the multi-light source system, optimizing the irradiance distribution of optical field. Next, the UV-LED collimated exposure machine with the light source arranged in sphere packing are optimized designed by the LSF method and use the the secondary derivative method to quickly calculate the source-to-source spacing of the better illuminance uniformity of irradiance in different positions of the optical field. After that, in order to increase the usable area size of collimated exposure machine, this study utilizes light from the edge of the multi-light source array to promote the lower irradiance position, and optimizes the position of the light source and uses the reflective element to establish an algorithm by the mirror virtual light source method. Finally, the preferred relative position of the light source and the reflective element are input to the optical simulation software for optimal design. According to the design results, this study successfully designed a UV-LED collimated exposure machine with DSR = 10, source-to-source spacing d=31.2mm, target area uniformity of irradiance of 92%, target area x direction width 102mm, y direction width 114 mm, and a scanning exposure machine with a target area of x direction width of 117 mm. This result proves the feasibility of applying the technology to UV-LED light source systems, and provides a precise design method which enables designers to quickly choose sources and reflective element positions according to the requirements. |