這篇論文中,我們用兩種手法來討論當w屬於A1權,且n/(n+ε)<p≤1時,Calderón-Zygmund算子在Hp的加權有界性。一種是用傳統的原子分解以及分子刻劃來證明;另外一種方法則是用到Calderón表示定理及Littlewood-Paley的理論來得到。 In this article, we show that Calderón-Zygmund operators are bounded on weighted Hardy space H_w^p provided w∈A_1 and n/(n+ε)<p≤1, the regular exponent ε of the Calderón-Zygmund kernel. There are two ways to get the main result, one is using the molecule characterization, the other is using the Littlewood-Paley theory.