由隨機變數之機率密度函數(probability density function)可以推得許多機率性質, 例如: 各階動差(moments)、分布函數(distribution function) 及特徵函數(characteristic function). 各階動差及分布函數有助於分布問題之計算, 特徵函數則有助於分布之判斷. 本文從一個新的觀點研究機率函數, 及探討位置尺度型機率密度函數之圖形繞旋轉軸一圈所形成之物體的體積及其機率意義. Probability density functions are useful and important in theory of probability and statistical inferences. In this paper, we first explore applications of location-scale probability density functions by introducing volumes of soilds generated by revolving probability density functions. Then, we compute and interpret these volumes.