由隨機變數之分布函數(distribution function)可以推得許多 機率性質, 例如:各階動差(moments)、機率密度函數(probability density function)及特徵函數(characteristic function). 各階動差及機率密度函數分布問題之計算, 特徵函數則有助於分布之判斷. 本文從一個新的觀點研究分布函數, 即探討位置尺度型(location-scale)分布函數之圖形繞旋轉軸一圈所形成之物體的體積及其機率意義. Distribution functions are useful and important in theory of probability and statistical inferences. In this paper, we first explore applications of distribution functions by introducing volumes of solids generated by revolving location-scale distribution functions. Then, we compute and interpret these volumes.