中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/79520
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41996731      在线人数 : 1696
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/79520


    题名: 奈米圖案化基板於白光有機發光二極體暨有機鈣鈦礦太陽能電池效率增益之研究;The Study of Efficiency Enhancement for White Light Organic Light-Emitting Diodes and CH3NH3PbI3 Perovskite Solar Cells via Nano-Patterned Substrate
    作者: 林昶嶸;Lin, Chang-Rong
    贡献者: 能源工程研究所
    关键词: 有機發光二極體;有機鈣鈦礦太陽能電池;奈米圖案化基板;Organic light emitting diode;Perovskite solar cell;Nano patterned substrate
    日期: 2018-11-27
    上传时间: 2019-04-02 14:45:06 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究中是藉由調整溶膠-凝膠法的參數,製作出不同粒徑的二氧化矽(SiO2)小球,並將SiO2小球應用於有機發光二極體(OLED, Organic Light-Emitting Diode)與有機鈣鈦礦太陽能電池(PSC, Organic-inorganic Halide Perovskite Solar Cell),成功地提升了OLED與PSC的元件效率。
    在OLED的研究中,我們結合單層小球鋪排技術以及乾蝕刻製程,所發展出的小球微影製程技術來製備圖案化銦錫氧化物(ITO)玻璃基板(PIS, Patterned ITO Substrate),並以此PIS製作出高出光效率的白光OLED。此外,藉由選擇單層鋪排時使用的小球粒徑,可製作出三種不同週期的PIS OLEDs (PIS-300 OLED、PIS-500 OLED與PIS-1000 OLED)。透過模擬結果與一系列的實驗分析可知,PIS OLEDs其元件效率的表現皆高於Planar OLED (對照組),且效率表現與PIS OLED的週期成反比。與Planar OLED相較之下,在注入元件之電流密度固定為20 mA/cm2時結構週期最小的PIS-300 OLED之操作電壓可下降約36%;此外當元件輝度值為5,000 cd/m2時,PIS-300 OLED之發光效率與外部量子效率可分別增益約228%及58%。
    於PSC的研究中,我們利用奈米級圖案化氟參雜氧化錫(FTO)玻璃基板(NPFS, Nano-patterned FTO Substrate),製作出以甲胺三碘鉛酸鹽(CH3NH3PbI3)為吸光層的高效率PSC元件。研究中我們利用單層小球鋪排技術,配合小球曝光微影製程技術,可製作出三種不同深度的NPFS-PSCs (100 nm、150 nm與200 nm)。經由光學上與電性上的分析結果可知,NPFS-PSCs不僅能增加鈣鈦礦層的吸光量,也能透過FTO與電子傳輸層之間增加的接觸面積提高電子萃取率。與對照組的Planar-PSC相較之下,FTO蝕刻深度為200 nm的NPFS-PSC其光電流密度可由19.27 mA/cm2提升至23.81 mA/cm2,且能量轉換效率可由14.21%增益至17.85%。由上述的結果可知,將NPFS應用在CH3NH3PbI3係的PSC元件中能不僅能同時提升光捕捉率與電子萃取率,也為高效率的PSC提供了可靠且嶄新的研究方向。
    ;In this study, we have synthesis the SiO2 sphere with variable diameters by tuning the recipes of sol-gel method, and successfully improve the efficiency via incorporating the spheres into an organic light-emitting diode (OLED) and an organic-inorganic halide perovskite solar cell (PSC).
    In terms of OLED, the output power enhancement of the white light OLED was demonstrated on a patterned indium tin oxide substrate (PIS) prepared via sphere lithography technique which consists of self-assembled monolayer SiO2 spheres and dry etching process. Herein, three different periods of PIS OLEDs (PIS-300 OLED, PIS-500 OLED and PIS-1000 OLED) were fabricated by selecting the diameter of deposited SiO2 spheres. Through simulation results and a series of experimental analyses, PIS OLEDs present better device performance than a Planar OLED (Control Sample), and the device performance was inversely proportional to the structural period of the PIS OLED. Compared with the planar OLED, the operating voltage of the PIS-300 OLED with smallest structural period of 300 nm was reduced 36% at an injection current density of 20 mA/cm2. Consequently, the luminous efficiency and external quantum efficiency of PIS-300 OLED can statically enhanced 228% and 58% at the luminance of 5,000 cd/m2.
    In terms of PSC, a CH3NH3PbI3-based perovskite solar cell (PSC) with high power conversion efficiency (PCE) has achieved by incorporating a nano-patterned fluorine-doped tin oxide (FTO) substrate (NPFS). This NPFS-PSC was prepared with different structural depths (100 nm, 150 nm, and 200 nm) using both self-assembly and sphere lithography techniques. As determine through the optical and electrical analysis of different PSC devices, the NPFS-PSCs not only display the enhanced light absorption (due to the two-dimensional diffraction grating) but also improve the electron collection efficiency by increasing the FTO/electron transport layer (ETL) and ETL/perovskite effective interface. Compared to a planar PSC (Control Sample), the photocurrent density of the 200-nm-etched NPFS-PSC is enhanced from 19.27 mA/cm2 to 23.81 mA/cm2 leading to an increase in the power conversion efficiency from 14.21% to 17.85%. These results indicate that introducing the NPFS into the CH3NH3PbI3-based PSC can improve both light harvesting and electron extraction efficiency and, therefore, represents a novel, promising, high-performance photovoltaic device.
    显示于类别:[Energy of Mechatronics] Electronic Thesis & Dissertation

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML151检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明