English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42127562      線上人數 : 689
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/79113


    題名: 台灣區域大氣水文觀測與預報實驗-子計畫:台灣降雨雲物理過程研究-西南氣流實驗研究(2008) III 及 台灣區域大氣水文觀測與預報實驗(TAPHOE) I-II;The Study of Microphysical Processes of Precipitation Systems in Taiwan: Sowmex/Timrex - III and Tahope Case Study - I, Ii
    作者: 張偉裕;張博雄
    貢獻者: 國立中央大學大氣科學學系
    關鍵詞: 降水系統;動力及雲物理場;偏極化雷達;precipitation system;kinematic and microphysical fields;dual-poalrimetric radar
    日期: 2019-02-21
    上傳時間: 2019-02-21 14:43:17 (UTC+8)
    出版者: 科技部
    摘要: 為了解劇烈降水系統的三維動力及雲物理場的特性,偏極化雷達扮演著重要的角色,其徑向風場(radial velocity)、差異反射率(differential reflectivity, ZDR)、差異相位差(differential phase shift, PHIDP)、比差異相位差(specific differential phase shift, KDP)及相關係數(correlation coefficient, RHV) 觀測變數,利用三維變分法及模糊邏輯法,可得到三維動力及雲物理場的分佈,而其中的雨滴粒徑分佈(Raindrop size distribution, RSD),也可以透過偏極化雷達參數反演而得,整合上述資料後,可分析降水系統初生期、發展期及消散期的結構特性。輔以高解析度對流尺度數值模擬,其有完整雲物理過程的模擬,計畫第一、二期所發展的偏極化雷達變數運算子(forward operator),搭配區域數值預報模式(WRF),挑選SoWMEX/TiMREX實驗期間劇烈降水個案,針對其:空間解析度、雲物理參數化法、地表參數化法及輻射參數化法等,已進行敏感度測試。結果顯示其可幫助了解劇烈天氣系統的降水過程,結果顯示數值模式與觀測分析有相當大的差異。本計劃預計進一步分析上述模擬結果,並規劃另行分析該降雨事件與地形交互作用的影響,包含:三維動力場、雲微物理場及雨滴粒徑分佈,以了解劇烈天氣系統的降水過程。 第一年:預計延續分析SoWMEX/TiMREX實驗期間的劇烈降水個案,比較數值模式模擬結果,與雙偏極化雷達反演、地面雨滴譜儀網觀測。建立分析工具,訓練專任、兼任研究助理熟悉地面雨滴譜儀網觀測資料。預計整合地面雨滴譜儀網觀測資料,與雙偏極化雷達觀測資料,解析中尺度降水系統的降水過程。 第二年 :逐步整合台灣雨滴譜儀觀測儀器,包含PARSIVEL、JWD和2DVD,根據NCAR S-PolKa的位置,在距離S-PolKa約30~50km的距離,建立高空間( 5 km,將數個雨滴譜儀以二維陣列的方式佈建,預計每維度至少3部雨滴譜儀)、時間(1 min)解析度的雨滴譜儀觀測網,並搭配台灣降水雷達網,進行預實驗。目的在確認儀器配置的合理性,並初步收集高空間、時間解析度的雨滴譜資料,初步建立台灣降水雲物理過程概念模式。 第三年 :搭配NCAR S-PolKa, ;The dual-polarization radar plays an important role in understanding the characteristics of the kinematic and microphysical fields of the severe precipitation systems. The spatiotemporal distributions of the kinematic and microphysical fields can be derived from the dual-polarization measurements of: radial velocity, differential reflectivity (ZDR), differential phase shift (PHIDP), specific differential phase shift (KDP) and correlation coefficient (RHV) via the variational-based multiple-Doppler radar synthesis method and fuzzy logic method. Moreover, the drop size distribution (DSD) of rain can also be retrieved from dual-polarization radar as well. Therefore, the evolutions and the structural characteristics of initiating, developing and dissipating stage of the precipitation systems can be investigated. In the previous two projects, the numerical simulation (WRF, NCAR) with sophisticated microphysical parameterization scheme and the dual-polarization moment forward operators were applied to the heavy precipitation event during SpWMEX/TiMREX. The results have shown some similarity compared to radar observations, but with some major discrepancy in DSD. The sensitivity test of various configures including spatial resolution, microphysical schemes, land surface scheme and radiation schemes will be further investigated and validated against the kinematic and microphysical retrieval from radar observations in the following project. In this three project, First year, continuing the study of the heavy precipitation event from SoWMEX/TiMREX. The detailed comparison between WRF simulation and S-POL observations will be continued. Moreover, the DSD observation from disdrometer network will be further investigated as well. The integrated examination from NWP simulation and various observations will be carried out. The analysis tools and concept model will be developed in this year. Second year, design and deploy the PARSIVEL disdrometer for TAHOPE. The high density disdrometer network with high spatial (two dimensions array network with at least three disdrometer in x and y axis with range resolution of 5 km) and temporal (1 min) resolution. The location of the disdrometer network should be coordinated with NCAR S-PolKa. The purpose is to examine the practicability of the deployment and collect the high spatiotemporal DSD data. Develop the preliminary concept model the precipitation process. Third year, participate TAHOPE and further utilize S-PolKa measurements from both S-band and Ka-band frequency. Further analyzing the evolution of the precipitation systems including the DSD, microphysical and kinematics fields. Verify and revise the concept model the precipitation process.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[大氣科學學系] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML257檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明