在擬議的計畫,我們將進行人造量子器件與光量子場之間量子相干交互作用的實驗研究。我們將以超導電路為平台,研究共振腔量子電動力學,使用tramsmon和超導共面波導(CPW)振盪器分別建構實驗研究所需的量子二位元及共振腔,並實現量子二位元與共振腔之間的強耦合。我們特別感興趣透過CPW共振腔形成兩個量子二位元間的量子糾纏態,在計畫進程,我們首先期望觀察到量子二位元與共振腔之間的強耦合作用,接下來我們將建構兩個tramsmon耦合同一個CPW共振腔的系統,期望在此系統見到透過共振腔中的虛擬光子的影響,兩個量子二位元間有交互作用,並發現兩個量子二位元處於量子糾纏態的證據。我們將開發在強色散範圍下以heterodyne量測方法偵測量子位元的量子態,此偵測技術將提供非破壞性量子量測方法確定量子系統狀態。最後,我們將發展以脈衝微波技術製備量子位元與共振腔系統的量子糾纏態。 ;The proposed work is to experimentally investigate quantum coherent interaction between artificial quantum objects and light fields. We will take the platform of circuit cavity quantum electrodynamics to study this problem. We will use the transmon design and superconducting coplanar waveguide (CPW) resonators to construct required qubits and cavities, respectively, and to realize strong coupling between qubits and cavities. We are particularly interested in quantum entanglement of transmon qubits via a CPW cavity. In the project we expect to first achieve qubit-cavity interaction in strong coupling regime. We will then work on a system containing two transmon qubits coupled to a CPW cavity. We anticipate finding out qubit-qubit interaction via the virtual photons in the cavity, and discovering the evidence of two qubit entanglement. We will develop heterodyne detection to perform dispersive readout for qubit quantum state in strong dispersive regime. This technique will offer quantum nondemolition measurement for determination of qubit state. Finally we will seek to use microwave pulsing technique for preparation of quantum entangled states in qubit-cavity systems.