中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/7697
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42386665      在线人数 : 912
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/7697


    题名: Cox 比例風險假設之探討與擴充風險模型之應用;Discussion on Cox Proportional Hazards Assumption and Application of Extended Hazard Model
    作者: 高欣如;Xin-ru Kao
    贡献者: 統計研究所
    关键词: 比例風險假設;擴充風險模型;長期追蹤資料;Schoenfeld 殘差;Cox 比例風險模型;Proportional hazards assumption;Cox proportional hazards model;Schoenfeld residual;Longitudinal data;Extended hazard model
    日期: 2009-05-25
    上传时间: 2009-09-22 11:02:26 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 存活分析中, Cox 比例風險模型(Cox proportional hazards model) 最常被用來描述變數與存活資訊間的關係。然而,我們需進一步地評估模型的正當性,也就是必須符合比例風險假設(proportional hazards assumption),方能利用 Cox 比例風險模型來配適資料。一個令人感興趣的問題是檢定比例風險假設是否有足夠的證據說明 Cox 比例風險模型可以配適資料配適的很好。另一方面,當比例風險假設不成立時,使用 Cox 比例風險模型是不合理的,因此,加速失敗時間 (accelerated failure time) 模型是另一個選擇,可以使用此模型來代替 Cox 模型。然而,在有時間相依(time-dependent) 共變數 (covariates) 之下的加速失敗時間模型,沒有一個簡單的方法可以檢驗加速失敗時間模型是否可以合理的配適資料。在此我們將介紹一個更廣義的模型,稱為擴充風險模型 (extended hazard model),此模型包含了 Cox 比例風險模型及加速失敗時間模型,可以用來解決上述的問題。因為 Cox 比例風險模型及加速失敗時間模型是擴充風險模型的特例,藉由此特性可以將此模型視為完整模型 (full model) ,而 Cox 比例風險模型及加速失敗時間模型視為簡約模型 (reduced model) 做概似比檢定(likelihood ratio test) 來決定用何種模型來配適存活資料。最後,以台灣愛滋病 (HIV/AIDS) 病患的資料證明可以使用擴充風險模型做模型的檢定, 選擇適當的模型。 The Cox proportional hazards model has been widely used to describe the relationship between survival information and covariates. The validity to apply the Cox model for data is usually based on checking the proportional hazards assumption. It’s an interesting problem to investigate whether checking this assumption is sufficient as an evidence to fit data with the Cox model. On the other hand, when proportional hazards assumption fails, the Accelerated Failure Time (AFT) model is a popular alternative to the Cox model. However, when data include time-dependent covariates there are no convenient tools to check if AFT is appropriate for the data. An general class model termed “extended hazard model”, which contains the Cox and AFT models as its special case may be helpful to study the above problems. Because under the nested structure, we may test the fit of Cox and AFT models for data. Finally, we demonstrate the new model through a case study of Taiwanese HIV/AIDS cohort data.
    显示于类别:[統計研究所] 博碩士論文

    文件中的档案:

    档案 大小格式浏览次数


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明