中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/67648
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42000453      Online Users : 1330
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/67648


    Title: Circular Numerical Range of S_n-Matrices
    Authors: 徐佳芸;Hsu,Chia-yun
    Contributors: 數學系
    Keywords: 數值域;數值域的半徑;Blaschke product;Numerical Range;Numerical Radius;Blaschke product
    Date: 2015-06-29
    Issue Date: 2015-07-31 00:55:34 (UTC+8)
    Publisher: 國立中央大學
    Abstract: $S_n$矩陣的數值域是一個圓盤,我們想知道第$k$層的數值域是否也是圓盤。我們讓$S_5$矩陣的特徵質屬於實數和數值域為圓盤。
    如果$S_n$結合Blaschke product $B$,並且$B$等於$C$合成$D$,其中$C$的degree是2、$D$的degree是3。我們會得到$S_5$的第2層也會是圓,$S_5$的第3層會是單點。
    $A$和$B$是2乘2矩陣,我們有$w(A+B)\leq w(A)+w(B)$基本的不等式。我們對在等號成立時感到興趣。 然而我們得到等號成立時,$A$和$B$矩陣必須滿足一些充分必要條件。;For an $S_n$-matrix with a circular disc as its numerical range, we want to know whether its rank-$k$ numerical range is also a circular disc. We show that, for an $S_5$-matrix $A$ with real spectrum and circular numerical range, if its associated Blaschke product $B$ has a normalized decomposition $B=C\circ D$, with $C$ of degree 2 and $D$ of degree 3, then $\Lambda_2(A)$ is also a circular disk and $\Lambda_3(A)$ is singleton (cf. Theorem 3.3). For $A$ and $B$ be $2\times2$ matrices, we have $w(A+B)\le w(A)+w(B)$. We are interested in when it becomes
    equality. We obtain a necessary and sufficient condition for $w(A+B)= w(A)+w(B)$ to hold (cf. Proposition 4.3).
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML576View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明