English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41995513      線上人數 : 1215
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/62584


    題名: 有機發光場效電晶體雷射;Organic Light-Emitting Field-Effect Transistor Lasers
    作者: 張瑞芬;李正中
    貢獻者: 國立中央大學光電科學與工程學系
    關鍵詞: 物理;電子電機工程;光電工程
    日期: 2012-12-01
    上傳時間: 2014-03-17 11:51:35 (UTC+8)
    出版者: 行政院國家科學委員會
    摘要: 研究期間:10108~10207;This research, Organic Light-Emitting Field-Effect Transistor Lasers, will deal with electrically pumped organic lasers by using organic gain structure in field-effect transistors incorporated with optical resonance cavities. This project must be achieving high-quality field-effect transistors and best resonance cavities. The overall research includes characterization of luminescent organic semiconductors, investigation of electrical and optical mechanisms in field-effect transistors, design and fabrication of resonance cavities, integration of light-emitting transistors and resonance cavities, and measurement of optical and electric characteristics of laser devices. Organic light-emitting field-effect transistor comprises of an organic light-emitting layer, a dielectric layer, and source, drain, gate three-terminal electrodes. The main advantage is its lateral source/drain configuration and the capability of positioning of light-emission zone in the channel with applied bias, which allows the vertical light output to be unaffected by lateral electrodes, and thereby the out-coupling efficiency is higher than conventional organic light-emitting diodes. Moreover, organic light-emitting field-effect transistors offer high structural compatibility and flexible device parameters, which is advantageous of optimizing electrical-optical properties of organic materials, improving external quantum efficiency, reducing exciton nonradiative loss, and integrating with various resonance cavities. Thus, for research of electrically-pumped organic lasers, organic light-emitting field-effect transistor is very promising. The current bottleneck of realizing electrically pumped organic lasers is due to requirement of extremely high threshold of current density. Therefore, this project will be firstly choosing high gain, highly conductive organic luminescent materials, and then on one hand optimizing electro-optical properties of light-emitting field-effect transistors to enhance current density and external quantum efficiency, and on the other hand utilizing resonance cavity effect to improve amplified spontaneous emission and to reduce threshold current. The optical resonance cavities investigated in this project are mainly based on photonic crystals and microcavities with one pair of highly reflective mirrors. In order to enhance the intensity of resonance cavity, the optimized structure parameters, cavity modes, and phase-matching conditions are simulated. Furthermore, this project will also be investigating the dependence of optical gain on current density, exciton density, and external quantum efficiency in laser devices. By developing an integrated research based on organic material characterizations, device physics of field-effect transistors, and mechanisms of resonance cavity, electrically pumped organic laser with low threshold is expected to be achieved.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[光電科學與工程學系] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML341檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明