English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41989988      線上人數 : 1187
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    NCU Institutional Repository > 理學院 > 數學系 > 期刊論文 >  Item 987654321/51213


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51213


    題名: The 2-stage Euclidean algorithm and the restricted Nagata's pairwise algorithm
    作者: Chen,CA;Leu,MG
    貢獻者: 數學系
    關鍵詞: RINGS
    日期: 2011
    上傳時間: 2012-03-27 18:25:07 (UTC+8)
    出版者: 國立中央大學
    摘要: As with Euclidean rings and rings admitting a restricted Nagata's pairwise algorithm, we will give an internal characterization of 2-stage Euclidean rings. Applying this characterization we are capable of providing infinitely many integral domains which are omega-stage Euclidean but not 2-stage Euclidean. Our examples solve finally a fundamental question related to the notion of k-stage Euclidean rings raised by G.E. Cooke [G.E. Cooke, A weakening of the Euclidean property for integral domains and applications to algebraic number theory I, J. Reine Angew, Math. 282 (1976) 133-156]. The question was stated as follows: "I do not know of an example of an omega-stage euclidean ring which is not 2-stage euclidean." Also, in this article we will give a method to construct the smallest restricted Nagata's pairwise algorithm theta on a unique factorization domain which admits a restricted Nagata's pairwise algorithm. It is of interest to point out that in a Euclidean domain the shortest length d(a, b) of all terminating division chains starting from a pair (a, b) and the value theta(a, b) with g.c.d.(a, b) not equal 1 can be determined by each other. (C) 2011 Elsevier Inc. All rights reserved.
    關聯: JOURNAL OF ALGEBRA
    顯示於類別:[數學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML600檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明