English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41999811      線上人數 : 930
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/50114


    題名: Effects of PAH biodegradation in the presence of non-ionic surfactants on a bacterial community and its exoenzymatic activity
    作者: Chang,YT;Thirumavalavan,M;Lee,JF
    貢獻者: 環境工程研究所
    日期: 2010
    上傳時間: 2012-03-27 17:03:46 (UTC+8)
    出版者: 國立中央大學
    摘要: The influence of two non-ionic surfactants (TX-100 and Brij 35) on a bacterial community and its exoenzymatic activity during polycyclic aromatic hydrocarbon (naphthalene, phenanthrene and pyrene) biodegradation was evaluated in this study. The result indicated the addition of the non-ionic surfactants altered the profiles of the microbial populations and produced exoenzymes. Fluorescence in situ hybridization found that, as PAH biodegradation progressed in the presence of non-ionic surfactant, the proportion of Bacteria presents increased significantly from the range 54.79%-57.00% to 64.17%-73.4% and there was parallel decrease in Archaea. The trends in five phyla/subclass of Bacteria, namely alpha-, beta-, or gamma-Proteobacteria, HGC bacteria and LGC bacteria, were influenced significantly by the addition of Brij 35 as either monomers or micelles. A change was ascribed to different cohesive energy density (CED) value between the PAH and surfactant. The percentage of genera Pseudomonas 4.76%-12.67%, which included two signals, namely most true Pseudomonas spp. and Pseudomonas aeruginosa, were dominant during biodegradation. For exoenzymaztic activities, trends were identified by principle component analysis of the API ZYM enzymatic activity dataset. The additions of non-ionic surfactant were identified strong activities of three esterase (esterase, esterase lipase and lipase), alpha-glucosidase, beta-glucosidase, leucine arylamidase and acid phosphatase during PAH biodegradation. These enzymes are selected as possible organic pollutant indicators when the in situ bioremediation was monitored in the presence of non- ionic surfactant additives.
    關聯: JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART A-TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING
    顯示於類別:[環境工程研究所 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML404檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明