English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41990108      線上人數 : 1238
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/29657


    題名: DISCOVERING STOCK TRADING PREFERENCES BY SELF-ORGANIZING MAPS AND DECISION TREES
    作者: Tsai,CF;Lin,YC;Wang,YT
    貢獻者: 資訊管理研究所
    關鍵詞: INVESTORS;INFORMATION;BUSINESS;NETWORKS
    日期: 2009
    上傳時間: 2010-06-29 20:37:31 (UTC+8)
    出版者: 中央大學
    摘要: Stock trading activities are always very popular in many countries. Generally, investors with various backgrounds have different preferences over the stocks they trade. In literature, a number of studies examine the institutions' holding preferences for certain stock characteristics when choosing the security portfolio. However, very few studies investigate the stock trading preferences of individual investors. In this paper, we focus on two factors which affect the portfolio choices of investors, which are stock characteristics and investor features. In particular, a self-organizing map (SOM) is used to group a certain number of clusters based on a chosen dataset. Then, the decision tree model is used to extract useful rules from the clusters which contain the most trading records in the sample. We find that if the investors are females, less wealthy, and make stock trades with lower frequencies, they will be more careful and conservative. On the other hand, if the investors are males, having a high level of wealth, and make stock trades very often, they tend to choose stocks with high EPS, high market-to-book, and high prices.
    關聯: INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS
    顯示於類別:[資訊管理研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML789檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明