English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41990025      線上人數 : 1192
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/26835


    題名: Application of cepstrum and neural network to bearing fault detection
    作者: Hwang,YR;Jen,KK;Shen,YT
    貢獻者: 機械工程研究所
    關鍵詞: ROLLER-BEARINGS;STATOR CURRENT;EMD METHOD;DIAGNOSIS
    日期: 2009
    上傳時間: 2010-06-29 18:01:21 (UTC+8)
    出版者: 中央大學
    摘要: This paper proposes an integrated system for motor bearing diagnosis that combines the cepstrum coefficient method for feature extraction from motor vibration signals and artificial neural network (ANN) models. We divide the motor vibration signal, obtain the corresponding cepstrum coefficients, and classify the motor systems through ANN models. Utilizing the proposed method, one can identify the characteristics hiding inside a vibration signal and classify the signal, as well as diagnose the abnormalities. To evaluate this method, several tests for the normal and abnormal conditions were performed in the laboratory. The results show the effectiveness of cepstrum and ANN in detecting the bearing condition. The proposed method successfully extracted the corresponding feature vectors, distinguished the difference, and classified bearing faults correctly.
    關聯: JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY
    顯示於類別:[機械工程研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML721檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明